解题思路:由于六边形的内角和为720°,然后利用六边形ABCDEF的内角都相等得到每个内角的度数为120°,而∠DAB=60°,四边形ABCD的内角和为360°,由此即可分别求出∠CDA和∠EDA,最后利用平行线的判定方法即可推知AB∥DE.
AB∥DE.理由如下:
六边形的内角和为:(6-2)×180°=720°.
∵六边形ABCDEF的内角都相等,
∴每个内角的度数为:720°÷6=120°.
又∵∠DAB=60°,四边形ABCD的内角和为360°,
∴∠CDA=360°-∠DAB-∠B-∠C=360°-60°-120°-120°=60°,
∴∠EDA=120°-∠CDA=120°-60°=60°,
∴∠EDA=∠DAB=60°,
∴AB∥DE(内错角相等,两直线平行).
点评:
本题考点: 全等三角形的判定与性质;多边形内角与外角.
考点点评: 本题考查了多边形的内角和,以及平行线的判定,垂直的证明,三角形的内角和定理,证明平行是关键.