∵∫e^xcosxdx=∫e^xd(sinx)=e^xsinx-∫sinxd(e^x)=e^xsinx-∫e^xsinxdx
=e^xsinx+∫e^xd(cosx)=e^xsinx+e^xcosx-∫cosxd(e^x)=e^xsinx+e^xcosx-∫e^xcosxdx,
∴2∫e^xcosxdx=e^xsinx+e^xcosx+C,
∴∫e^xcosxdx=(e^xsinx+e^xcosx)/2+C,
∴原式=(e^xsinx+e^xcosx)/2|(上限为π/2、下限为0)
=[e^(π/2)sin(π/2)+e^(π/2)cos(π/2)]/2-(e^0sin0+e^0cos0)/2
=[e^(π/2)]/2-1/2.