给你一个一样的例题:
已知椭圆x^2/2+y^2/4=1与射线y=根号2x(x>=0)交于点A,过点A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为B,C.
(1)求证:直线BC的斜率为定值.
(2)求三角形ABC面积的最大值.
【解】:
(1)以y=√2x(x≥0)代入椭圆方程,解得x=1,故y=√2,所以A(1,√2),
设AC斜率为k(k>0),因为AB的倾角与AC的倾角互补,所以AB的斜率为-k,
故AC方程为:y=k(x-1)+√2,AB方程为:y=-k(x-1)+√2,
以AC方程y=k(x-1)+√2代入椭圆方程,
整理得:(k^2+2)x^2+(2√2k-2k^2)x+k^2-2√2k-2=0,
因为A(1,√2)为AC与椭圆交点,故1为上方程的一个根,另一根为x[C],
故x[C]·1=x[C]=(k^2-2√2k-2)/(k^2+2),
故y[C]=k(x[C]-1)+√2=(-√2k^2-4k+2√2)/(k^2+2),
故C((k^2-2√2k-2)/(k^2+2),(-√2k^2-4k+2√2)/(k^2+2)),
同理可求得B((k^2+2√2k-2)/(k^2+2),(-√2k^2+4k+2√2)/(k^2+2)),
直线BC的斜率k[AB]=(y[C]-y[B])/(x[C]-x[B])
=[(-√2k^2-4k+2√2)/(k^2+2)-(-√2k^2+4k+2√2)/(k^2+2)]/[k^2-2√2k-2)/(k^2+2)-(k^2+2√2k-2)/(k^2+2)]=8k/(4√2k)=√2,
所以直线BC的斜率为√2.
(2)设直线BC与y轴交点为(0,b),又直线BC的斜率为√2,
故直线BC方程为y=√2x+b,代入椭圆方程得:4x^2+2√2bx+b^2-4=0,
令△>0,得b^2<8,
x[B]+x[C]=-√2b/2,x[B]·x[C]=(b^2-4)/4,
(x[B]-x[C])^2=(x[B]+x[C])^2-4x[B]·x[C]=4-b^2/2,
y[B]+y[C]=(√2x[B]+b)+(√2x[C]+b)=√2(x[B]+x[C])+2b=b,
y[B]·y[C]=(√2x[B]+b)·(√2x[C]+b)
=2x[B]·x[C]+√2b(x[B]+x[C])+b^2=b^2/2-4,
(y[B]-y[C])^2=(y[B]+y[C])^2-4y[B]·y[C]=4-b^4,
故|AB|=√[(x[B]-x[C])^2+(y[B]-y[C])^2]=√(8-3b^2/2),
求得原点O到AB的距离h=|b|/√3,
因为AO与BC斜率均为√2,所以AO‖BC,
故A到AB的距离也为h,
三角形ABC的面积S=|AB|h/2=(√6/12)√(-3b^4+16b^2),
[把(-3b^4+16b^2)看作b^2的二次函数],
故当b^2=8/3时,Smax=(√6/12)·8/√3=2√2/3.