∵lim(x->0){[√(1+x+x²)-(1+ax)]/x²}=b
==>lim(x->0){[x+(1-a)]/[x√(1+x+x²)+(1+ax)]}=b (分子有理化化简)
∴1-a=0 ==>a=1
==>lim(x->0){1/[√(1+x+x²)+(1+x)]}=b
==>1/2=b
故a=1,b=1/2.
∵lim(x->0){[√(1+x+x²)-(1+ax)]/x²}=b
==>lim(x->0){[x+(1-a)]/[x√(1+x+x²)+(1+ax)]}=b (分子有理化化简)
∴1-a=0 ==>a=1
==>lim(x->0){1/[√(1+x+x²)+(1+x)]}=b
==>1/2=b
故a=1,b=1/2.