数学的二次函数抛物线的特点

1个回答

  • 1.抛物线是轴对称图形.对称轴为直线x = -b/2a.

    对称轴与抛物线唯一的交点为抛物线的顶点P.

    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

    2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

    当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上.

    3.二次项系数a决定抛物线的开口方向和大小.

    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.

    |a|越大,则抛物线的开口越小.

    4.一次项系数b和二次项系数a共同决定对称轴的位置.

    当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号

    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时

    (即ab< 0 ),对称轴在y轴右.

    事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的

    斜率k的值.可通过对二次函数求导得到.

    5.常数项c决定抛物线与y轴交点.

    抛物线与y轴交于(0,c)

    6.抛物线与x轴交点个数

    Δ= b*2-4ac>0时,抛物线与x轴有2个交点.

    Δ= b*2-4ac=0时,抛物线与x轴有1个交点.

    _______

    Δ= b^2-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上

    虚数i,整个式子除以2a)

    当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

    当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

    7.特殊值的形式

    ①当x=1时 y=a+b+c

    ②当x=-1时 y=a-b+c

    ③当x=2时 y=4a+2b+c

    ④当x=-2时 y=4a-2b+c

    8.定义域:R

    值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

    正无穷);②[t,正无穷)

    奇偶性:偶函数

    周期性:无

    解析式:

    ①y=ax^2+bx+c[一般式]

    ⑴a≠0

    ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

    ⑶极值点:(-b/2a,(4ac-b^2)/4a);

    ⑷Δ=b^2-4ac,

    Δ>0,图象与x轴交于两点:

    ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

    Δ=0,图象与x轴交于一点:

    (-b/2a,0);

    Δ<0,图象与x轴无交点;

    ②y=a(x-h)^2+k[顶点式]

    此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

    ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

    对称轴X=(X1+X2)/2 当a>0 且X≥(X1+X2)/2时,Y随X的增大而增大,当a>0且X≤(X1+X2)/2时Y随X

    的增大而减小

    此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

    用).

    [编辑本段]二次函数与一元二次方程

    特别地,二次函数(以下称函数)y=ax^2+bx+c,

    当y=0时,二次函数为关于x的一元二次方程(以下称方程),

    即ax^2+bx+c=0

    此时,函数图像与x轴有无交点即方程有无实数根.

    函数与x轴交点的横坐标即为方程的根.

    1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

    解析式 顶点坐标 对 称 轴

    y=ax^2 (0,0) x=0

    y=ax^2+K (0,K) x=0

    y=a(x-h)^2 (h,0) x=h

    y=a(x-h)^2+k (h,k) x=h

    y=ax^2+bx+c (-b/2a,4ac-b^2/4a) x=-b/2a

    当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,

    当h0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

    当h>0,k