已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4.(m∈R)

1个回答

  • 解题思路:(1)要证直线l无论m取何实数与圆C恒相交,即要证直线l横过过圆C内一点,方法是把直线l的方程改写成m(2x+y-7)+x+y-4=0可知,直线l一定经过直线2x+y-7=0和x+y-4=0的交点,联立两条直线的方程即可求出交点A的坐标,然后利用两点间的距离公式求出AC之间的距离d,判断d小于半径5,得证;

    (2)根据圆的对称性可得过点A最长的弦是直径,最短的弦是过A垂直于直径的弦,所以连接AC,过A作AC的垂线,此时的直线与圆C相交于B、D,弦BD为最短的弦,接下来求BD的长,根据垂径定理可得A是BD的中点,利用(1)圆心C到BD的距离其实就是|AC|的长和圆的半径|BC|的长,根据勾股定理可求出[1/2]|BD|的长,求得|BD|的长即为最短弦的长;根据点A和点C的坐标求出直线AC的斜率,然后根据两直线垂直时斜率乘积为-1求出直线BD的斜率,又直线BD过A(3,1),根据斜率与A点坐标即可写出直线l的方程.

    (1)直线方程l:(2m+1)x+(m+1)y=7m+4,可以改写为m(2x+y-7)+x+y-4=0,所以直线必经过直线2x+y-7=0和x+y-4=0的交点.由方程组

    2x+y−7=0

    x+y−4=0解得

    x=3

    y=1即两直线的交点为A(3,1),

    又因为点A(3,1)与圆心C(1,2)的距离d=

    5<5,

    所以该点在C内,故不论m取什么实数,直线l与圆C恒相交.

    (2)连接AC,当直线l是AC的垂线时,此时的直线l与圆C相交于B、D.BD为直线l被圆所截得的最短弦长.此时,|AC|=

    5,|BC|=5,所以|BD|=2

    25−5=4

    5.即最短弦长为4

    点评:

    本题考点: 直线与圆的位置关系;直线和圆的方程的应用.

    考点点评: 本题考查学生会求两直线的交点坐标,会利用点到圆心的距离与半径的大小比较来判断点与圆的位置关系,灵活运用圆的垂径定理解决实际问题,掌握两直线垂直时斜率的关系,会根据斜率与一点坐标写出直线的方程,是一道综合题.