已知函数f(x)=ax^2/2-(2a+1)x+2lnx(a为实数)
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a;
(2)求f(x)的单调区间;
(3)设g(x)=x^2-2x,若对任意x1属于(0,2】,均存在x2属于(0,2】,使得f(x1) f’(1)=a-(2a+1)+2,f’(3)=3a-(2a+1)+2/3
∴a-(2a+1)+2=3a-(2a+1)+2/3==>a=2/3
(2)解析:当a=0时,f(x)= -x+2lnx (x>0)
令f’(x)=-1+2/x=0==>x=2
f’’(x)= -2/x^2x1=2,x2=1/a(舍)
f’’(x)=a-2/x^20时,f(x)=ax^2/2-(2a+1)x+2lnx (x>0)
令f’(x)=(ax^2-(2a+1)x+2)/x=0==>x1=2,x2=1/a
f’’(x)=a-2/x^2==> f’’(x1)=a-1/2,f’’(x2)=a-2a^2
∴00,f(x)在x=2处取极小值;f’’(x2)