令 x+1=tanu,则· dx=(secu)^2du,
I=∫dx/[(x+1)^2*√(x^2+2x+1)] =∫dx/{(x+1)^2*√[(x+1)^2+1]}
=∫(secu)^2du/[(tanu)^2*secu] =∫secudu/(tanu)^2
=∫cosudu/(sinu)^2=∫dsinu/(sinu)^2=C-1/sinu=C-cscu
=C-√(x^2+2x+2)/(x+1).
令 x+1=tanu,则· dx=(secu)^2du,
I=∫dx/[(x+1)^2*√(x^2+2x+1)] =∫dx/{(x+1)^2*√[(x+1)^2+1]}
=∫(secu)^2du/[(tanu)^2*secu] =∫secudu/(tanu)^2
=∫cosudu/(sinu)^2=∫dsinu/(sinu)^2=C-1/sinu=C-cscu
=C-√(x^2+2x+2)/(x+1).