如图,∠BAC=45,∠BCA=30
△AOB等腰,∠OAB=∠OBA
△BOC等腰,∠OBC=∠OCB
∠ABC=180-∠BAC-∠BCA=180-45-30=105
∠AOC
=360-∠OAB-∠OCB-∠ABC
=360-(∠OAB+∠OCB)-∠ABC
=360-(∠OBA+∠OBC)-∠ABC
=360-2∠ABC=360-2*105=150
∠OAC=(180-∠AOC)/2=(180-150)/2=15
由正弦定理OC/AC=Sin(∠OAC)/Sin(∠AOC)
OC/4=Sin15/Sin150
OC=2√6-2√2
即半径为2√6-2√2
如对答案满意,赞同不等同于采纳