两个正项数列{an}{bn},an,bn^2,a(n+1)是等差数列,bn^2,a(n+1),b(n+1)^2是等比数列

2个回答

  • 1.

    a(n+1)^2=(bn^2)b(n+1)^2

    a(n+1)=bnb(n+1)

    2bn^2=an+a(n+1)

    =bnb(n-1)+bnb(n+1)

    2bn=b(n-1)+b(n+1)

    所以bn是等差数列;

    2.

    2bn^2=an+a(n+1)

    2b1^2=a1+a2=8

    b1=2

    a2=b1b2

    b2=6/2=3

    d=b2-b1=1

    所以

    bn=2+(n-1)=n+1

    an=bnb(n-1)

    =n(n+1)

    =n^2-n

    cn=(an-n^2)q^bn

    =nq^(n+1)

    Sn=q^2+2q^3+3q^4+……+(n-2)q^(n-1)+(n-1)q^n+nq^(n+1)

    (1/q)Sn=q^1+2q^2+3q^3+……+(n-2)q^(n-2)+(n-1)q^(n-1)+nq^n

    相减:

    (1/q-1)Sn=q^1+q^2+q^3+……+q^(n-2)+q^(n-1)+q^n-nq^(n+1)

    =q(1-q^n)/(1-q)-nq^(n+1)

    (1/q-1)Sn=q(1-q^n)/(1-q)-nq^(n+1)

    Sn=[q^2/(1-q)^2]*(1-q^n)-[1/(1-q)]nq^(n+2)

    =q^2/(1-q)^2-q^(n+2)/(1-q)^2-[1/(1-q)]nq^(n+2)

    =q^2/(1-q)^2-[1/(1-q)^2+n/(1-q)]q^(n+2)