limx趋于无穷(ln(1+x)/x)^(1/x)的极限

2个回答

  • lim[x→∞] {[ln(1 + x)]/x}^(1/x)

    = lim[x→∞] [(1/x)ln(1 + x)]^(1/x)

    = lim[x→∞] {ln[(1 + x)^(1/x)]}^(1/x)

    = {lnlim[x→∞] [(1 + x)^(1/x)]}^{lim[x→∞] 1/x}

    = [ln(e)]^(0)

    = 1^0

    = 1

    如果不是上面那个,就是下面这个

    lim[x→∞] {ln[(1 + x)/x]}^(1/x)

    = lim[x→∞] [ln(1 + 1/x)]^(1/x)

    lim[x→∞] (1/x)^(1/x)、取自然对数

    = lim[x→∞] ln[(1/x)^(1/x)]

    = lim[x→∞] ln(1/x)/x、洛必达法则

    = lim[x→∞] 1/(1/x) * (- 1/x²)

    = lim[x→∞] (- 1/x)

    = 0

    = ln(1)、去掉自然对数

    = 1