(1四次方+1/4)(3四次方+1/4)..(19四次方+1/4)/(2四次方+1/4)(4四次方+1/4)...(20

1个回答

  • 答案应为 1/841

    首先原式化为(4x1四次方+1)(4x3四次方+1)..(4x19四次方+1)/(4x2四次方+1)(4x4四次方+1)...(4x20四次方+1)

    按照a^2+b^2=(a+b)^2-2ab

    分解因式4x(2n-1)^4+1=[2x(2n-1)^2+1]^2-4x(2n-1)^2

    =[2x(2n-1)^2+1+2x(2n-1)]x[2x(2n-1)^2+1-2x(2n-1)]

    =(8n^2-4n+1)(8n^2-12n+5)

    同理分解因式4x(2n)^4+1=(8n^2-4n+1)(8n^2+4n+1)

    两式相除后消去相同项

    所求s=s1s2s3.sn

    sn=(8n^2-12n+5)/(8n^2+4n+1)

    而8n^2-12n+5=(4n-3)^2+1

    8n^2+4n+1=(4n+1)^2+1

    s=(1^2+1)(5^2+1)(9^2+1)..(27^2+1)/(5^2+1)(9^2+1)(13^2+1)..(27^2+1)(41^2+1)

    =(1^2+1)/(41^2+1)

    =1/841

    注:^2表示某个数的平方