y'=1/[x+√(1+x²)]*[x+√(1+x²)]'
=1/[x+√(1+x²)]*[1+2x/2√(1+x²)]
=1/[x+√(1+x²)]*[x+√(1+x²)]/√(1+x²)
=1/√(1+x²)
=(1+x²)^(-1/2)
所以y''=(-1/2)(1+x²)^(-3/2)*(1+x²)'
=-1/[(1+x²)√(1+x²)]
y'=1/[x+√(1+x²)]*[x+√(1+x²)]'
=1/[x+√(1+x²)]*[1+2x/2√(1+x²)]
=1/[x+√(1+x²)]*[x+√(1+x²)]/√(1+x²)
=1/√(1+x²)
=(1+x²)^(-1/2)
所以y''=(-1/2)(1+x²)^(-3/2)*(1+x²)'
=-1/[(1+x²)√(1+x²)]