【思路】设A为三人中至少有一个女孩,B为已知三人中有一个女孩另外至少有一个男孩;P(A) =1-(1/2)*(1/2)*1/2=7/8 ,P(AB)=1-(1/2)*(1/2)=3/4,
所以 P(B|A) = P(AB)/P(A) = 6/7.
(这样分析是认为三个孩子是排序的,一男二女就包括 bgg,gbg,ggb 三种情况,总共有八个样本,这比抛硬币难理解一些)
【思路】设A为三人中至少有一个女孩,B为已知三人中有一个女孩另外至少有一个男孩;P(A) =1-(1/2)*(1/2)*1/2=7/8 ,P(AB)=1-(1/2)*(1/2)=3/4,
所以 P(B|A) = P(AB)/P(A) = 6/7.
(这样分析是认为三个孩子是排序的,一男二女就包括 bgg,gbg,ggb 三种情况,总共有八个样本,这比抛硬币难理解一些)