(a²-b²)/ab-(ab-b²)/(ab-a²)
=(a²-b²)/ab-b(a-b)/a(b-a)
=(a²-b²)/ab+b/a
=(a²-b²+b²)/ab
=a²/ab
=a/b
1/a-1÷(a²-1)/(a²+a)
=(1-a)/a×a(a+1)/(a-1)(a+1)
=-1
[1-(a²+8)/(a²+4a+4)]÷(4a-4)/(a²+2a)
=(a²+4a+4-a²-8)/(a+2)²÷4(a-1)/a(a+2)
=4(a-1)/(a+2)²÷4(a-1)/a(a+2)
=a/(a+2)
[(2a-2b)/(a²-2ab+b²)+b/(a²-b²)]÷(3b+2a)/(a-b)
=[2(a-b)/(a-b)²+b/(a-b)(a+b)]÷(3b+2a)/(a-b)
=(2a+2b+b)/(a+b)÷(3b+2a)/(a-b)
=(a-b)/(a+b) a=5 b=2
=(5-2)/(5+2)
=3/7