由 |OA+OB|≥|AB|=|OB-OA| 两边平方得
OA^2+2OA*OB+OB^2≥OA^2+OB^2-2OA*OB ,
所以可得 OA*OB≥0 ,
将 y= -x-m 代入圆的方程得 x^2+(-x-m)^2=2 ,
化简得 2x^2+2mx+m^2-2=0 ,
设 A(x1,y1),B(x2,y2),则
判别式=4m^2-8(m^2-2)>0 ,解得 -2
由 |OA+OB|≥|AB|=|OB-OA| 两边平方得
OA^2+2OA*OB+OB^2≥OA^2+OB^2-2OA*OB ,
所以可得 OA*OB≥0 ,
将 y= -x-m 代入圆的方程得 x^2+(-x-m)^2=2 ,
化简得 2x^2+2mx+m^2-2=0 ,
设 A(x1,y1),B(x2,y2),则
判别式=4m^2-8(m^2-2)>0 ,解得 -2