∵向量AB+(1/2)向量AD=向量AC.
又,向量AB+向量BC=向量AC.
比较可知,向量BC=(1/2)向量AD. ∴向量BC与向量AD共线,但两者无公共点,故向量BC∥向量AD.
过D点作直线平行AB,交BC的延长线于E. 则四边形ABED为菱形.
在△BDE中,|BE|=|BD|=|DE|,|BC|=|CE|, CD⊥BC.
|CD|=√3/2|BE|(|AD|), 题设|CD|=√3.
|AD|=2.
Sabed=|AD|*|CD|=2√3. 【Sabed ---四边形ABED的面积】
Sabcd=(3/4)Sabed=(3/4)*2√3. 【Sabcd ---四边形ABCD 的面积】
=(3/2)√3 (面积单位) ----即为所求四边形ABCD的面积.