解题思路:根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.
∵点E,F分别是边AD,AB的中点,
∴EF∥DB,
∴AH=HO,
∵平行四边形ABCD的对角线AC、BD相交于点O,
∴AO=CO,
∴CH=3AH,
∴[AH/HC]=[1/3].
故选C.
点评:
本题考点: 三角形中位线定理;平行四边形的性质.
考点点评: 本题考查了平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键.