求证数道几何证明题1.BD,CE是三角形ABC的角平分线,做DF⊥AB于F,EG⊥AC于G,M为DE中点,MN⊥BC于N

2个回答

  • 抱歉 我竞赛参加太多 暂时没有比较巧的证法

    只有纯计算的证法 您要是不喜欢就跳过吧

    哈哈

    首先 把 圆心O 与所有点都连起来 接下来 是这样滴

    设 ∠ACO 为 x 则 ∠DOE 为 2x 则 DE = r(圆的半径)* sin(2x)

    又 GE/AC=BE/BA 则 GE = AC(= r/tan(x))* BE (=r-r * cos (2x))/ 2r

    所以 得到 2GE = r-r * cos(2x)/ tan(x)

    只需化简 证明 2GE= DE 即可 都含r 和x的三角 很好办了

    这个办法 利用的是三角函数 在多图形里的传递 是 在单圆的几何题中的通解通法 除了这样 应该有一个形式非产漂亮 的 面积法 但是 内涵与 三角法 是完全一样的 构造 应该也基于 三角 用这个方法 反过来构造

    如果想到更漂亮的解法 再说吧!