f'(x)=lim(Δx-->0)Δy/Δx
=lim(Δx-->0)[sin(3x 3Δx 1)-sin(3x 1)]/Δx
=lim(Δx-->0)[2cos(3x 3/2*Δx 1)sin(3Δx/2)]/Δx
=cos(3x 1)*lim(Δx-->0)3sin(3Δx/2)/(3Δx/2)
根据重要极限lin(x-->0)sinx/x=1
∴lim(Δx-->0)sin(3Δx/2)/(3Δx/2)=1
∴f'(x)=cos(3x 1)*lim(Δx-->0)3sin(3Δx/2)/(3Δx/2)
=3cos(3x 1)