(1)
f(x)=cos²x+√3sinxcosx
=(1+cos2x)/2+√3/2sin2x
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+(1/2)
最小正周期为π
(2)
把2x+π/6代入到标准正弦函数sint中去解出单调区间的做法是:
由 - π/2+2kπ≤2x+π/6≤π/2+2kπ得:
- π/3+kπ≤x≤π/6+kπ
所以原函数的单调增区间是:
【- π/3+kπ,π/6+kπ】
(3)
sin(2x+π/6)+(1/2)=1
sin(2x+π/6)=(1/2)
π/4≤x≤3π/4==>2π/3≤2x+π/6≤5π/3==>2x+π/6=5π/6
x=π/3