1、
1/n×(n+k) = 1/k×(1/n-1/(n+k))
2、
因为
|ab-3|+(a-1)^2=0
所以
ab=3,a=1,b=3
1/ab+1/(a+2)(b+2)+1/(a+4)(b+4)+1/(a+6)(b+6)+……+1/(a+100)(b+100)
=1/(b-a)×(1/a-1/b) + 1/(b-a)×(1/(a+2)-1/(b+2)) + ...+ 1/(b-a)×(1/(a+100)-1/(b+100))
=1/2 × (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/101 - 1/103 )
=51/103