过M作MN∥DC于点N,
因为M是AD的中点,MN为提梯形中位线,BN=CN ,MN=1/2(AB+CD)=1/2BC
所以MN=BN=CN
则:∠MBC=∠BMN=∠ABM ∠NMC=∠BCM=∠MCD
又因为:∠ABC+∠BCD=180°
所以:∠BMN+∠MCB=90°
所以:BM⊥CM.
过M作MN∥DC于点N,
因为M是AD的中点,MN为提梯形中位线,BN=CN ,MN=1/2(AB+CD)=1/2BC
所以MN=BN=CN
则:∠MBC=∠BMN=∠ABM ∠NMC=∠BCM=∠MCD
又因为:∠ABC+∠BCD=180°
所以:∠BMN+∠MCB=90°
所以:BM⊥CM.