对于p命题,令y'=3x^2-3a=0,x=√a,即p命题成立的充要条件是a>=0
对于q命题, x^2-2ax+1的定义域是(0,+∞),而x^2-2ax+1 --> 0,则要求:(x-a)^2 --> a^2 -1,所以a^2-1>=0,a>=1或a=0 或a=1,所以“p且q”为假的集合是a
对于p命题,令y'=3x^2-3a=0,x=√a,即p命题成立的充要条件是a>=0
对于q命题, x^2-2ax+1的定义域是(0,+∞),而x^2-2ax+1 --> 0,则要求:(x-a)^2 --> a^2 -1,所以a^2-1>=0,a>=1或a=0 或a=1,所以“p且q”为假的集合是a