不用对数也可以,直接用均值不等式就行.
可得:a=3-b,所以
2^a+2^b
=2^(3-b)+2^b
=2^3/2^b+2^b
=8/2^b+2^b
≥2√(8/2^b×2^b)
=2√8
=4√2
即8/2^b=2^b,2^2b=8=2^3,2b=3,b=3/2时,获得最小值为4√2.
不用对数也可以,直接用均值不等式就行.
可得:a=3-b,所以
2^a+2^b
=2^(3-b)+2^b
=2^3/2^b+2^b
=8/2^b+2^b
≥2√(8/2^b×2^b)
=2√8
=4√2
即8/2^b=2^b,2^2b=8=2^3,2b=3,b=3/2时,获得最小值为4√2.