因式分解:1、(x²-4x-12)(x²-4x+3)+56

2个回答

  • 1、设x²-4x=y

    则(x²-4x-12)(x²-4x+3)+56

    =(y-12)(y+3)+56

    =y²-9y+20

    =(y-4)(y-5)

    =(x²-4x-4)(x²-4x-5)

    =(x+1)(x-5)(x²-4x-4)

    2、(x-1)(x+2)(x-3)(x-6)+56

    =[(x+2)(x-6)][(x-1)(x-3)]+56

    =(x²-4x-12)(x²-4x+3)+56

    之后的过程就和第1题一样,

    结果是=(x+1)(x-5)(x²-4x-4)

    3、(x²-7x+6)(x²-x-6)+56

    =(x-6)(x-1)(x+2)(x-3)

    =(x-1)(x+2)(x-3)(x-6)+56

    之后的过程就和第2题一样,

    结果是=(x+1)(x-5)(x²-4x-4)

    4、(x+y)⁴-(x-y)⁴

    =[(x+y)²]-[(x-y)²]²

    =[(x+y)²+(x-y)²][(x+y)²-(x-y)²]

    =(x²+2xy+y²+x²-2xy+y²){[(x+y)+(x-y)][(x+y)-(x-y)]}

    =[2(x²+y²)]·(2x)·(2y)

    =8xy(x²+y²)

    5、ab(c²+d²)+cd(a²+b²)

    =abc²+abd²+a²cd+b²cd

    =ac·bc+ad·bd+ac·ad+bc·bd

    =ac(bc+ad)+bd(ad+bc)

    =(ac+bd)(ad+bc)

    6、3a²x²-15a²xy-42a²y²

    =3a²·x²-3a²·5xy-3a²·14y²

    =3a(x²-5xy-14y²)

    =3a²(x+2y)(x-7y)