解题思路:由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到AB=AE,接着利用正方形和正三角形的内角的性质即可求解.
∵正方形ABCD,
∴∠BAD=90°,AB=AD,
又∵△ADE是正三角形,
∴AE=AD,∠DAE=60°,
∴△ABE是等腰三角形,∠BAE=90°+60°=150°,
∴∠ABE=∠AEB=15°.
故答案为:15°.
点评:
本题考点: 正方形的性质;等腰三角形的判定与性质;等边三角形的性质.
考点点评: 此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题.