(Ⅰ)由题意,2an+1−an=n,又a1=
1
2,所以2a2−a1=1,解得a2=
3
4.(2分)
同理a3=
11
8,a4=
35
16,(3分)
(Ⅱ)因为2an+1-an=n,
所以bn+1=an+2−an+1−1=
an+1+n+1
2−an+1−1=
n−an+1−1
2,(5分)bn=an+1−an−1=an+1−(2an+1−n)−1=n−an+1−1=2bn+1,即
bn+1
bn=
1
2(7分)
又b1=a2−a1−1=−
3
4,所以数列{bn}是以−
3
4为首项,[1/2]为公比的等比数列.(9分)
(Ⅲ)由(Ⅱ)知bn=−
3
4•(
1
2)n−1(10分)
∴an+1-an-1=−
3
4•(
1
2)n−1∴an+1-an=−
3
4•(
1
2)n−1+1(11分)
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(12分)
=[1/2]-
3
4[(
1
2)0+(
1
2)1+(