单调递增
利用单调性的定义,
任取X1>X2>2,所以X1-X2>0,
F(X1)-F(X2)=X1+4/X1-(X2+4/X2)
=X1-X2+4/X1-4/X2
=(X1-X2)+4(X2-X1)/X1·x2
=(x1-x2)·(1-4/x1·x2)
=(x1-x2)·(x1·x2-4)/x1·x2 (*)
由上式:X1-X2>0,X1·X2-4>0
(*)式大于零,所以F(X1)-F(X2)>0
所以在二到正无穷上是单调递增的
单调递增
利用单调性的定义,
任取X1>X2>2,所以X1-X2>0,
F(X1)-F(X2)=X1+4/X1-(X2+4/X2)
=X1-X2+4/X1-4/X2
=(X1-X2)+4(X2-X1)/X1·x2
=(x1-x2)·(1-4/x1·x2)
=(x1-x2)·(x1·x2-4)/x1·x2 (*)
由上式:X1-X2>0,X1·X2-4>0
(*)式大于零,所以F(X1)-F(X2)>0
所以在二到正无穷上是单调递增的