tanC/tanA+tanC/tanB=1,
∴sinCcosA/(sinAcosC)+sinCcosB/(sinBcosC)=1,
去分母得sinC(cosAsinB+sinAcosB)=sinAsinBcosC,
cosAsinB+sinAcosB=sin(A+B)=sinC,
sinAsinB=(1/2)[cos(A-B)-cos(A+B)]=(1/2)[cos(A-B)+cosC],
∴(sinC)^2=(1/2)[cos(A-B)+cosC]cosC,
设cosC=x,m=cos(A-B),则-1