已知f(x)=ax-ln(-x),g(x)=-ln(-x)/x,x∈[-e,0),a∈R

1个回答

  • (1)∵f(x)=-x-ln(-x) f‘(x)=-1-1/x=-(x+1)/x

    当-e≤x<-1时,f′(x)<0,此时f(x)为单调递减

    当-1<x<0时,f'(x)>0,此时f(x)为单调递增

    ∴f(x)的极小值为f(-1)=1

    (2)∵f(x)的极小值,即f(x)在[-e,0)的最小值为1

    |f(x)|min=1

    令h(x)=g(x)+1/2=-[ln(-x)]/x+1/2

    又∵ h'(x)=ln(-x-1)/x^2

    当-e≤x<0时h′(x)≤0,h(x)在[-e,0)上单调递减

    ∴ h(x)max=h(-e)=1/e+1/2g(x)+1/2

    (3)假设存在实数a,使f(x)=ax-ln(-x)有最小值3,x∈[-e,0)f'(x)=a-1/x

    ①当a>=-1/e 时,由于x∈[-e,0),则f'(x)=a-1/x>=0

    ∴函数f(x)=ax-ln(-x)是[-e,0)上的增函数

    ∴f(x)min=f(-e)=-ae-1=3

    解得a=-4/e (舍去)

    ②当a0 ,此时f(x)=ax-ln(-x)是增函数

    ∴f(x)min=f(1/a)=3

    解得a=-e^2