令:a+π/6=b;a∈(-π/6,π/3),则:b∈(0,π/2);2b∈(0,π),所以:0≤sin2b≤1
因为:sinb=1/3;所以:cosb=√(1-1/9)=√8/3=2√2/3
则:sin2b=2sinbcosb=2*1/3*2√2/3=4√2/9
所以:sin(2a+π/3)=4√2/9
令:a+π/6=b;a∈(-π/6,π/3),则:b∈(0,π/2);2b∈(0,π),所以:0≤sin2b≤1
因为:sinb=1/3;所以:cosb=√(1-1/9)=√8/3=2√2/3
则:sin2b=2sinbcosb=2*1/3*2√2/3=4√2/9
所以:sin(2a+π/3)=4√2/9