1、m·n=-cos^2A/2+sin^2A/2=-cosA=1/2
cosA=-1/2 则sinA=根号3/2
S=1/2bcsinA=根号3 有bc=4
余弦定理:b^2+c^2-2bccosA=a^2
代入 有b^2+c^2=8
(b+c)^2=b^2+c^2+2bc=16
故b+c=4
2、正弦定理:b=asinB/sinA c=asinC/sinA
b+c=a(sinB+sinC)/sinA=4(sinB+sinC)
A=2/3π
B+C=π/3 b+c=4(sinB+sin(1/3π-B))
=4(根3/2cosB+1/2sinB)=4sin(B+π/3)
又0