[(sina+cosa)^2-(sina-cosa)^2]/[tana-sina*cosa]

1个回答

  • 1.将(sinα+cosα)^2和(sinα-cosα)^2拆开后化简

    2.tanα写成sinα/cosα,在与sinαcosα通分

    3.化简

    用到的公式:(a+b)^2=a^2+b^2+2ab

    sin^2α+cos^2α=1

    sinα/cosα=tanα

    cosα/sinα=cotα

    原式=[sin^2a+cos^2a+2sinacosa-sin^2a-cos^2a+2sinacosa]/tana-sinacosa]

    =4sinacosa/[(sina/cosa)-sinacosa]

    =4sinacosa/sina(1-cos^2 a)/cosa

    =4sinacos^2a/sina*sin^2 a

    =4sinacos^2a/sin^3 a

    =4cos^2a