解题思路:设出第一个方程的两根,表示出后面方程的另2根.利用根与系数的关系均得到与a的关系,进而消去a,得到两个一次项的积为一个常数的形式,判断可能的整数解,得到a,b,c的值,相加即可.
设方程x2+ax+b=0的两个根为α,β,
∵方程有整数根,
设其中α,β为整数,且α≤β,
则方程x2+cx+a=0的两根为α+1,β+1,
∴α+β=-a,(α+1)(β+1)=a,
两式相加,得αβ+2α+2β+1=0,
即(α+2)(β+2)=3,
∴
α+2=1
β+2=3或
α+2=-3
β+2=-1.
解得
α=-1
β=1或
α=-5
β=-3.
又∵a=-(α+β)=-[(-1)+1]=0,b=αβ=-1×1=-1,c=-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2,
或a=-(α+β)=-[(-5)+(-3)]=8,b=αβ=(-5)×(-3)=15,
c=-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6,
∴a=0,b=-1,c=-2;或者a=8,b=15,c=6,
∴a+b+c=0+(-1)+(-2)=-3或a+b+c=8+15+6=29,
故a+b+c=-3,或29.
点评:
本题考点: 一元二次方程的整数根与有理根.
考点点评: 主要考查一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;消去a后得到两个一次项的积为一个常数的形式是解决本题的难点.