∵a n+3=a n,∴数列{a n}为周期为3的周期数列,∴a 2010=a 3×670= a 3 =
2
3 ,a 2009= a 2 =
3
2 ,a 2011= a 1 =
1
3
∴f(a 2011)=f(
1
3 ),f(a 2009)=f(
3
2 )=f(2-
1
2 )=f(
1
2 ),f(a 2010)=f(
2
3 )
∵f(x)=f(2-x),∴函数f(x)的图象关于x=1对称,又∵当x≤1时,f(x)=|1-a x|(a>1),故函数f(x)的图象如图:
函数f(x)在(0,1)上为增函数,
∵
1
3 <
1
2 <
2
3 ,∴f(
1
3 )<f(
1
2 )<f(
2
3 )
即f(a 2011)<f(a 2009)<f(a 2010)
故选 B