已知函数f(x)对任意x∈R,都有f(x)=f(2-x),且当x≤1时,f(x)=|1-a x |(a>1),又数列{a

1个回答

  • ∵a n+3=a n,∴数列{a n}为周期为3的周期数列,∴a 2010=a 3×670= a 3 =

    2

    3 ,a 2009= a 2 =

    3

    2 ,a 2011= a 1 =

    1

    3

    ∴f(a 2011)=f(

    1

    3 ),f(a 2009)=f(

    3

    2 )=f(2-

    1

    2 )=f(

    1

    2 ),f(a 2010)=f(

    2

    3 )

    ∵f(x)=f(2-x),∴函数f(x)的图象关于x=1对称,又∵当x≤1时,f(x)=|1-a x|(a>1),故函数f(x)的图象如图:

    函数f(x)在(0,1)上为增函数,

    1

    3 <

    1

    2 <

    2

    3 ,∴f(

    1

    3 )<f(

    1

    2 )<f(

    2

    3 )

    即f(a 2011)<f(a 2009)<f(a 2010

    故选 B