x^5+x^5-x^3y^2-x^2y^3
=x^3(x^2-y^2)-y^3(x^2-y^2)
=(x^2-y^2)(x^3-y^3)
=(x-y)(x+y)(x-y)(x^2+xy+y^2)
=(x-y)^2(x+y)(x^2+xy+y^2)
因x大于等于0 y大于等于0
所以x+y≥0 x^2+xy+y^2≥0
而(x-y)^2≥0
故(x-y)^2(x+y)(x^2+xy+y^2)≥0
所以x5+y5>=x3y2+x2y3
得证
x^5+x^5-x^3y^2-x^2y^3
=x^3(x^2-y^2)-y^3(x^2-y^2)
=(x^2-y^2)(x^3-y^3)
=(x-y)(x+y)(x-y)(x^2+xy+y^2)
=(x-y)^2(x+y)(x^2+xy+y^2)
因x大于等于0 y大于等于0
所以x+y≥0 x^2+xy+y^2≥0
而(x-y)^2≥0
故(x-y)^2(x+y)(x^2+xy+y^2)≥0
所以x5+y5>=x3y2+x2y3
得证