如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,试判断下列结论:①△AB

2个回答

  • (1)∵▱ABCD,∴AD=BC,AD∥BC.

    E、F分别是边AD、BC的中点,

    ∴BF∥DE,BF=DE.

    ∴BEDF为平行四边形,BE=DF.故正确;

    (2)根据平行线等分线段定理可得AG=GH=HC.故正确;

    (3)∵AD∥BC,AE= ½AD= ½BC,

    ∴△AGE∽△CGB,AE:BC=EG:BG=1:2,

    ∴EG= ½BG.故正确.

    (4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,

    ∴S△ABE=3S△AGE.故正确.

    故有3个正确.

    如果您满意,