证明:1、∠C为公共角,∠DEC=∠ADC=90° 故 △DEC∽△ADC 所以DE:CE=AD:CD
2、由DE:CE=AD:CD可知:DM:CE=AD:BC (BC=2*DC;DE=2*DM) 又∠C=90°-∠EDC=∠ADE; 所以:△BCE∽△ADM
3、因为△BCE∽△ADM所以:∠AMD=∠BEC;可知:∠AME=∠BEA;又∠BEA+∠BED=90°;所以:∠AME+∠BED=90°即AM与BE互相垂直.
证明:1、∠C为公共角,∠DEC=∠ADC=90° 故 △DEC∽△ADC 所以DE:CE=AD:CD
2、由DE:CE=AD:CD可知:DM:CE=AD:BC (BC=2*DC;DE=2*DM) 又∠C=90°-∠EDC=∠ADE; 所以:△BCE∽△ADM
3、因为△BCE∽△ADM所以:∠AMD=∠BEC;可知:∠AME=∠BEA;又∠BEA+∠BED=90°;所以:∠AME+∠BED=90°即AM与BE互相垂直.