讨论极限lim(x→0 y→0) [(X^2)y]/[(x^4)+(y^2)]:
1个回答
极限不存在.
点(x,y)沿曲线y=k*x^2趋向于(0,0),f(x,y)趋向于k/(1+k^2),路径不同,极限不同,所以(x,y)趋向于(0,0)时,f(x,y)无极限.
相关问题
证明lim(x,y)→(0,0) (x+2y)/(2x-y)极限不存在
证明下列极限不存在(1) Lim x+y/x-y (2)lim x²y²/ x²y²+(x-y)²(x,y)→(0,0)
2元函数求极限lim(x-0,y-0)xy/(x^2+y^2)极限
求证明极限lim(x,y)->(0,0) (x^2 * sin^2y)/x^2 +9y^2 =0
二元函数求极限:lim (sin(x^2+y)) / (x^2+y^2) x→0,y→0
求多元函数的极限 lim(x^2+y^2)^(x^2*y^2) x->0,y->0
极限limxy/(x+y)=?x→0,y→0,lim(xy)/(x+y)=?
求一个二元函数的极限lim((x^2)y+x^5)/(x^4+x^6+2(x^3)y+y^2))(x,y)->(0,0)
设函数f(x,y)=x^2y^2/x^4+y^4,(x,y)≠(0,0),则lim(x,y)→(0,0)f(x,y)=
大家看看有什么区别lim lim [(x^2-y^2)/(x^2+y^2)]y-0 x-0lim lim [(x^2-y