n(n-1)/2
两条直线只有一个交点,第3条直线和前两条直线都相交,增加了2个交点,得1+2 ;第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 ;第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4;………;第n条直线和前n-1条直线都相交,增加了n-1个交点;由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个),这里n≥2,其和可表示为〔1+(n+1)〕× (n+1)/2,即n(n-1)/2个交点
n(n-1)/2
两条直线只有一个交点,第3条直线和前两条直线都相交,增加了2个交点,得1+2 ;第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 ;第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4;………;第n条直线和前n-1条直线都相交,增加了n-1个交点;由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个),这里n≥2,其和可表示为〔1+(n+1)〕× (n+1)/2,即n(n-1)/2个交点