过A作AC⊥BC于C,
∵AB的坡度i=1:3,
∴tanα=
AC
BC =
1
3 ,
设AC=x,BC=3x,
根据勾股定理可得:AB=
A C 2 +B C 2 =
10 x,
则sinα=
AC
AB =
x
10 x =
10
10 .
故答案为:
10
10 .
过A作AC⊥BC于C,
∵AB的坡度i=1:3,
∴tanα=
AC
BC =
1
3 ,
设AC=x,BC=3x,
根据勾股定理可得:AB=
A C 2 +B C 2 =
10 x,
则sinα=
AC
AB =
x
10 x =
10
10 .
故答案为:
10
10 .