1、∵△ABC是等边三角形
∴∠A=∠B=∠C=60°
∵△ADE≌△FDE
∴∠DFE=∠A=60°
AD=DF,AE=EF
∠ADE=∠FDE,∠AED=∠FED
∵∠BFD+∠CFE=180°-∠DFE=180°-60°=120°
∠BDF+∠BFD=180°-∠B=180°-60°=120°
∴∠CEF=∠BDF
∠B=∠C=60°
∴△BDF∽△CFE;
2、∵AD=DF,AE=EF
∴AD/AE=DF/EF=4/3
∵△BDF∽△CFE;
∴BF/CE=DF/EF=4/3
∴CE=3/4BF,CF=7-BF
EF=AE=7-CE=7-3/4BF=(28-3BF)/4
做FG⊥CE于G
∴∠CFG=90°-60°=30°
∴CG=1/2CF=(7-BF)/2
EG=CE-CG=3/4BF-(7-BF)/2=(5BF-14)/4
∵FG²=CF²-CG²
FG²=EF²-EG²
那么[(28-3BF)/4]²-[(5BF-14)/4]²=(7-BF)²-[(7-BF)/2]²
(28-3BF)²-(5BF-14)²=16(7-BF)²-4(7-BF)²
784-168BF+9BF²-25BF²+140BF-196=12(49-14BF+BF²)
784-168BF+9BF²-25BF²+140BF-196=588-168BF+12BF²
28BF²-140BF=0
BF²-5BF=0
BF=5
BF=0(舍去)