如图,等边三角形ABC边长为7cm,D、E分别在AB、AC上,AD/AE=4/3,将△ADE沿DE翻折,使A落在BC上的

2个回答

  • 1、∵△ABC是等边三角形

    ∴∠A=∠B=∠C=60°

    ∵△ADE≌△FDE

    ∴∠DFE=∠A=60°

    AD=DF,AE=EF

    ∠ADE=∠FDE,∠AED=∠FED

    ∵∠BFD+∠CFE=180°-∠DFE=180°-60°=120°

    ∠BDF+∠BFD=180°-∠B=180°-60°=120°

    ∴∠CEF=∠BDF

    ∠B=∠C=60°

    ∴△BDF∽△CFE;

    2、∵AD=DF,AE=EF

    ∴AD/AE=DF/EF=4/3

    ∵△BDF∽△CFE;

    ∴BF/CE=DF/EF=4/3

    ∴CE=3/4BF,CF=7-BF

    EF=AE=7-CE=7-3/4BF=(28-3BF)/4

    做FG⊥CE于G

    ∴∠CFG=90°-60°=30°

    ∴CG=1/2CF=(7-BF)/2

    EG=CE-CG=3/4BF-(7-BF)/2=(5BF-14)/4

    ∵FG²=CF²-CG²

    FG²=EF²-EG²

    那么[(28-3BF)/4]²-[(5BF-14)/4]²=(7-BF)²-[(7-BF)/2]²

    (28-3BF)²-(5BF-14)²=16(7-BF)²-4(7-BF)²

    784-168BF+9BF²-25BF²+140BF-196=12(49-14BF+BF²)

    784-168BF+9BF²-25BF²+140BF-196=588-168BF+12BF²

    28BF²-140BF=0

    BF²-5BF=0

    BF=5

    BF=0(舍去)