(1)、由正弦定理:sinA/a=sinB/b=sinC/c,得:(3c-a)/b=(3sinC-sinA)/sinB=(cosA-3cosC)/cosB,展开移项得:cosBsinA+sinAcosB=3(sinCcosB+cosBsinC);
即:sin(A+B)=3sin(B+C),sinC=3sinA,sinC/sinA=3.
(2)、c/a=sinC/sinA=3,故c=3a,B为钝角,cosB
(1)、由正弦定理:sinA/a=sinB/b=sinC/c,得:(3c-a)/b=(3sinC-sinA)/sinB=(cosA-3cosC)/cosB,展开移项得:cosBsinA+sinAcosB=3(sinCcosB+cosBsinC);
即:sin(A+B)=3sin(B+C),sinC=3sinA,sinC/sinA=3.
(2)、c/a=sinC/sinA=3,故c=3a,B为钝角,cosB