过P作PE∥BC交BQ于E.
∵ABCD是平行四边形,∴AQ∥BC,又PE∥BC,∴AQ∥PE,∴△BPE∽△BAQ,
∴PE/AQ=PB/AB,
∴PE=PB×AQ/AB=PB×AQ/(PB+AP)=AQ/(1+AP/PB)=AQ/(1+m).
∵PE∥BC,∴△RPE∽△RCB,∴PR/RC=PE/BC.
∵ABCD是平行四边形,∴AD=BC,
∴PR/RC=PE/AD
=[AQ/(1+m)]/(AQ+QD)=[(AQ/QD)/(1+m)]/(1+AQ/QD)
=[n/(1+m)]/(1+n)=n/[(1+m)(1+n)].