(1)设y=a(x-2)2-1.
将(0,11)代入可得:11=4a-1,于是a=3,
所以y=3(x-2)2-1=3x2-12x+11.
(2)设二次函数f(x)=ax2+bx+c(a≠0),
由f(0)=1,可知c=1.
而f(x+1)-f(x)=[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2ax+a+b,
由f(x+1)-f(x)=2x,可得2a=2,a+b=0.
因而a=1,b=-1,
所以f(x)=x2-x+1.
(1)设y=a(x-2)2-1.
将(0,11)代入可得:11=4a-1,于是a=3,
所以y=3(x-2)2-1=3x2-12x+11.
(2)设二次函数f(x)=ax2+bx+c(a≠0),
由f(0)=1,可知c=1.
而f(x+1)-f(x)=[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2ax+a+b,
由f(x+1)-f(x)=2x,可得2a=2,a+b=0.
因而a=1,b=-1,
所以f(x)=x2-x+1.