x=1+1/根号2+1/根号3+...+1/根号100
=1+2/2√2+2/2√3+…+2/2√100
>1+2/(√2+√3)+2/(√3+√4)+…+2/(√100+√101)
//(这里是2√22/(√2+√3).)
=1+2(√3-√2)+2(√4-√3)+…+2(√101-√100) //2/(√2+√3)上下乘以√3-√2
=1+2(√101-√2) >18
所以,x>18
x=1+2/2√2+2/2√3+…+2/2√100
x=1+1/根号2+1/根号3+...+1/根号100
=1+2/2√2+2/2√3+…+2/2√100
>1+2/(√2+√3)+2/(√3+√4)+…+2/(√100+√101)
//(这里是2√22/(√2+√3).)
=1+2(√3-√2)+2(√4-√3)+…+2(√101-√100) //2/(√2+√3)上下乘以√3-√2
=1+2(√101-√2) >18
所以,x>18
x=1+2/2√2+2/2√3+…+2/2√100