(a^4+b^4)(a^2+b^2)-(a^3+b^3)^2
=a^6+a^4b^2+a^2b^4+b^6-a^6-2a^3b^3-b^6
=a^4b^2+a^2b^4-2a^3b^3
=a^2b^2(a^2-2ab+b^2)
=a^2b^2(a-b)^2
所以若a=0或b=0或a=b
所以a^2b^2(a-b)^2=0
则(a^4+b^4)(a^2+b^2)=(a^3+b^3)^2
若a≠0且b≠0且a≠b
则a^2b^2(a-b)^2>0
则(a^4+b^4)(a^2+b^2)>(a^3+b^3)^2