高一上学期化学期末复习提纲?谁能帮我找下?

2个回答

  • 三角函数恒等变形公式:

    ·两角和与差的三角函数:

    cos(α+β)=cosα·cosβ-sinα·sinβ

    cos(α-β)=cosα·cosβ+sinα·sinβ

    sin(α±β)=sinα·cosβ±cosα·sinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    ·辅助角公式:

    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

    sint=B/(A^2+B^2)^(1/2)

    cost=A/(A^2+B^2)^(1/2)

    ·倍角公式:

    sin(2α)=2sinα·cosα

    cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

    tan(2α)=2tanα/[1-tan^2(α)]

    ·三倍角公式:

    sin3α=3sinα-4sin^3(α)

    cos3α=4cos^3(α)-3cosα

    ·半角公式:

    sin^2(α/2)=(1-cosα)/2

    cos^2(α/2)=(1+cosα)/2

    tan^2(α/2)=(1-cosα)/(1+cosα)

    tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

    ·万能公式:

    sinα=2tan(α/2)/[1+tan^2(α/2)]

    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

    tanα=2tan(α/2)/[1-tan^2(α/2)]

    ·积化和差公式:

    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

    ·和差化积公式:

    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

    ·其他:

    sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

    cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

    sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0