(1)由折叠可得AE=EC,AF=CF,∠BAF=∠DCE
又∵AB=CD,∠D=∠B
∴△ABF≌△CDE
∴AF=EC
又∵AE=EC,AF=CF
∴AE=CD=CF=AF
∴四边形AFCE是菱形
(2)设AB的长为x则BF的长为48/x
由勾股定理可得
AB2+BF2=AF2
即x2+(48/x) 2 =102
解得:x1=8
x2=6
∴AB=6或8 BF=8或6
∴△ABF的周长=6+8+10=24cm
请给分.
(1)由折叠可得AE=EC,AF=CF,∠BAF=∠DCE
又∵AB=CD,∠D=∠B
∴△ABF≌△CDE
∴AF=EC
又∵AE=EC,AF=CF
∴AE=CD=CF=AF
∴四边形AFCE是菱形
(2)设AB的长为x则BF的长为48/x
由勾股定理可得
AB2+BF2=AF2
即x2+(48/x) 2 =102
解得:x1=8
x2=6
∴AB=6或8 BF=8或6
∴△ABF的周长=6+8+10=24cm
请给分.